Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

(2E)-2-(3,5-Dimethoxyphenyl)-3-(4-ethoxy-3-iodophenyl)acrylic acid

Kai Chen, S. James Adelstein and Amin I. Kassis*

Department of Radiology, Harvard Medical School, 200 Longwood Ave, Armenise Building, D2-137, Boston, MA 02115, USA

Correspondence e-mail:
amin_kassis@hms.harvard.edu

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.066$
Data-to-parameter ratio $=18.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The X-ray analysis of the title compound, $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}_{5}$, shows that the orientation of the two benzene rings is cis and confirms the E configuration of the molecule. The occurrence of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions results in the formation of centrosymmetric dimers.

Comment

Since the position of an Auger electron emitter (e.g. ${ }^{77} \mathrm{Br},{ }^{123} \mathrm{I}$ or $\left.{ }^{125} \mathrm{I}\right)$ vis \grave{a} vis DNA is of paramount importance for DNA double-strand-break yield and toxicity (Kassis, 2004), the development of a carrier molecule locating the Auger electron emitter in close proximity to the nuclear DNA of cells is of great interest. We have recently focused on the synthesis of Hoechst-skeleton-based ligands, designed by in silico methods (Chen et al., 2004a,b), with predictable iodine-to-DNA distances. The title compound, (I), has been produced as an important intermediate, and its configuration has been determined by X-ray structure analysis and is presented here.

(I)

As shown in Fig. 1, the orientation of the two benzene rings is cis, thus clearly demonstrating that the configuration of compound (I) is E. The $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$ and $\mathrm{C} 2-\mathrm{C} 3-$ $\mathrm{C} 10-\mathrm{C} 11$ torsion angles are 174.7 (3) and $169.0(3)^{\circ}$, respectively, indicating that the iodine-substituted benzene ring and the acrylic acid group are nearly coplanar, whereas the dimethoxy-substituted benzene ring is inclined to this plane, with a dihedral angle of 72.50 (7) ${ }^{\circ}$ between planes C4-C9 and $\mathrm{C} 10-\mathrm{C} 15$. In the crystal structure, strong intermolecular O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) connect the molecules, producing distinct dimers arranged around inversion centres (Fig. 2).

Experimental

To a solution of 4-ethoxy-3-iodobenzaldehyde (2 mmol), prepared according to the method of Harapanhalli et al. (1996), and (3,5dimethoxyphenyl)acetic acid (2 mmol) in acetic anhydride (10 ml), triethylamine (4 mmol) was added dropwise and the solution was

Received 15 September 2005 Accepted 26 September 2005 Online 30 September 2005
stirred at 363 K for 6 h . Water (6 ml) was then added and the reaction was allowed to continue for 30 min , after which $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mmol})$ in water (10 ml) was added dropwise and the reaction warmed to 333 K . The reaction was stirred for an additional 30 min , then cooled to 283 K , and acidified to pH 3 with 6 M HCl . The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$, and the organic phases were combined, washed with brine ($3 \times 15 \mathrm{ml}$), and dried. The solution was then concentrated under reduced pressure and the residue was recrystallized from ethanol to afford compound (I) (yield: 80%, m.p. $480 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR (d_{6}-DMSO, 200 MHz): $\delta 7.61(s, 1 \mathrm{H}), 7.53(s, 1 \mathrm{H})$, $7.12(d, 1 \mathrm{H}), 6.85(d, 1 \mathrm{H}), 6.52(s, 1 \mathrm{H}), 6.31(s, 2 \mathrm{H}), 4.06(q, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.71(s, 6 \mathrm{H}), 1.31(t, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. HR-MS (ESI), calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}_{5}:[M+\mathrm{Na}]^{+} 477.0169$; found: 477.0188. Crystals suitable for single-crystal X-ray diffraction were obtained by evaporation of an ethanol solution at 298 K .

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{IO}_{5} \\
& M_{r}=454.26 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=12.688(2) \AA \\
& b=11.1649(19) \AA \\
& c=14.229(2) \AA \\
& \beta=112.861(2)^{\circ} \AA^{\circ} \\
& V=1857.4(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.624 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 978 \\
& \quad \text { reflections } \\
& \theta=3.1-27.9^{\circ} \\
& \mu=1.75 \mathrm{~mm}^{-1} \\
& T=193(2) \mathrm{K} \\
& \text { Chunk, yellow } \\
& 0.20 \times 0.16 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.665, T_{\text {max }}=0.811$
11524 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.066$
$S=1.20$
4310 reflections
230 parameters
H -atom parameters constrained

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
A molecular view of the dimer resulting from the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. H atoms bonded to C atoms have been omitted for clarity. Dashed lines indicate the hydrogen-bonding interactions [symmetry code: (i) $1-x,-y, 1-z]$.

The authors acknowledge support from NIH grant 5R01CA15523 to AIK, and Dr Richard J. Staples, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, for helpful discussions.

References

Bruker (1997). ASTRO (Version 5.007). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chen, K., Adelstein, S. J. \& Kassis, A. I. (2004a). Int. J. Radiat Biol. 80, 921926.

Chen, K., Adelstein, S. J. \& Kassis, A. I. (2004b). J. Mol. Struct. (Theochem), 711, 49-56.

Harapanhalli, R. S., McLaughlin, L. W., Howell, R. W., Rao, D. V., Adelstein, S. J. \& Kassis, A. I. (1996). J. Med. Chem. 39, 4804-4809.

Kassis, A. I. (2004). Int. J. Radiat Biol. 80, 789-803.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

